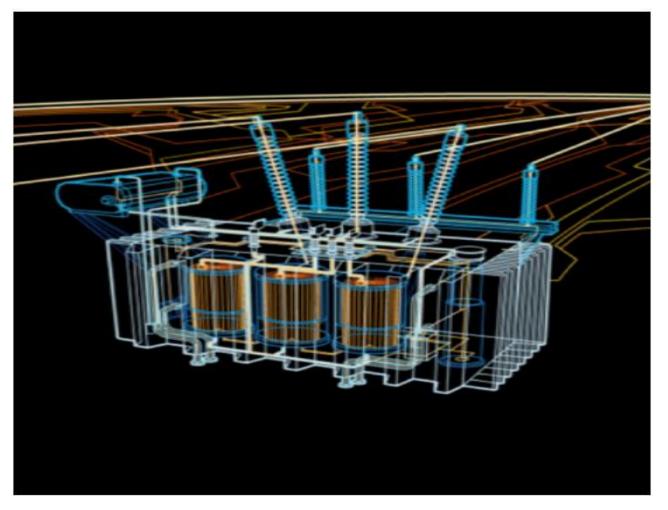
DISSOLVED GAS ANALYSIS IN TRANSFORMER MAINTENANCE

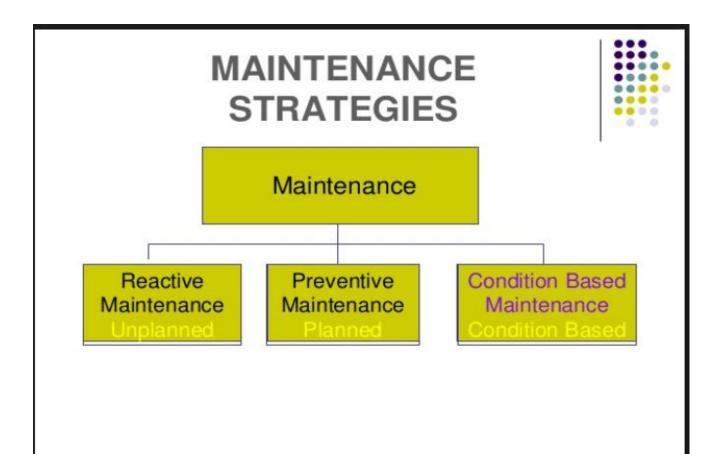
ENGR. INIGO V. ESCOPETE, JR.

Reliability Supervisor, AP Renewables, Inc. ITC Level 2 Certified Thermographer Phil. National Certifying Body: Certified NDT-UT Level 2


Agenda:

- Overview on Condition Based Maintenance Approach
- Transformer Asset Management
- Principle of Dissolved Gas Analysis
- Transformer Oil Sampling Procedures
- Case Study

Power Transformers


Failure: They Happen

Maintenance Strategy

Condition Based Maintenance (CBM)

Condition based maintenance (CBM) is a maintenance strategy that <u>monitors</u> the <u>actual condition</u> of the asset to **decide** what maintenance <u>needs to be done.</u>

CBM dictates that maintenance should only be **<u>performed</u>** when certain **<u>indicators</u>** show signs of <u>**decreasing**</u> **<u>performance</u>** or <u>**upcoming failure.**</u>

Types of Condition Based Maintenance

Vibration Analysis – rotating equipment such as compressor, pumps, motors all exhibit a certain degree of vibration. As they degrade, or fall out of alignment, the amount of vibration increases.

Infrared Thermography – IR cameras can be used to detect high temperature conditions in energized equipment.

Ultrasonic – detection of deep subsurface defects such as cracks, flaws like in generator rotor shaft.

Types of Condition Based Maintenance

Partial Discharge Analysis – Used to monitor partial discharge activity on generator and motor stator winding insulation.

Oil Particle Counter – Used to monitor the cleanliness of turbine lube oil and transformer oil.

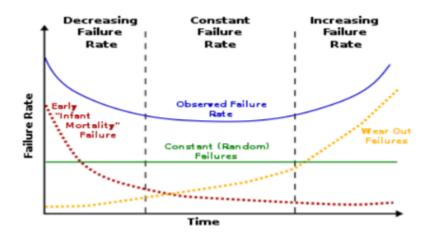
Videoscope / Boroscope – Used to visualize the internal status of small diameter pipe and hard to reach equipment parts.

Types of Condition Based Maintenance

Dielectric Breakdown Voltage -

Used for dielectric breakdown voltage test of transformer oil.

Dissolved Gas


Analysis – Used to monitor the dissolved gases in the transformer insulating medium.

Transformer Asset Management

"Bathtub" curve

Transformer are a critical and costly element in the power system

Unplanned failures at any point in the transformer lifecycle have major consequences

DGA condition assessment has been recognized for over 50 years for improving reliability and lowering transformer asset maintenance costs

Function of Oil in the Transformer

- Provide Insulation
- Provide Cooling
- Help extinguish Arc
- Oil dissolved gases generated by oil degradation, moisture and gas from cellulose insulation, deterioration.

Dissolved Gas Analysis - DGA

DGA is the single most comprehensive asset condition assessment and management tool for an oil-filled power transformers.

DGA offers advanced detection of incipient fault condition leading to almost all of the failure modes of transformer faults.

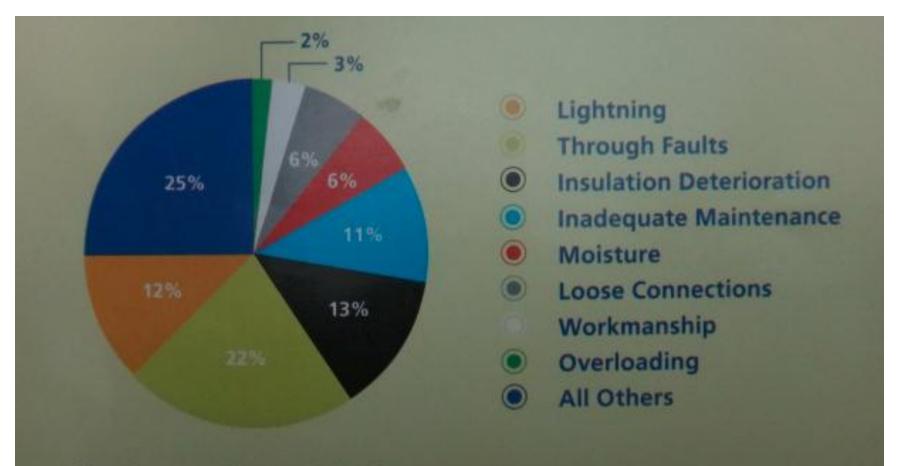


Chart Source: William H. Bartley, P.E. The Hartford Steam Boiler Inspection and Insurance Co.

Purpose of DGA

- To provide a non-intrusive means to determine if a transformer incipient fault condition exists or not
- To have a high probability that when entering a transformer a problem is apparent
- To prevent an unexpected outage
- To reduce risk to the unit, to the system it connected, to the company and most of all to the personnel monitoring that transformer.

DGA Application

- Oil immersed transformer
- Oil immersed shunt reactors
- Oil type OLTC, Regulators
- Oil circuit breakers
- Oil type instrument transformers (CT,PT)

When to conduct DGA for Transformers?

- After high voltage and temperature rise test in the factory
- Commissioning period
 - Energize under no load
 - Energize with load
- Before lapsed of warranty period
- CBM
 - Predictive maintenance
 - Faults
 - > Transformer main protection trip
 - Buchholz relay activated
 - Pressure relay activated
 - Differential relay activated
 - Overloading
 - EOL

Gas Sources

- Gases in oil always result from the decomposition of electrical insulation materials (oil or paper), as a result of faults or chemical reaction in the equipment
- For example:
 - Oil is a molecule of hydrocarbons, containing hydrogen and carbon atoms linked by chemical bonds (C-H, C-C)

Gas	HYDROGEN				
Formula	H2				
Solubility in Oil @ 25°C	0.06				
Solubility in Oil @ 70°C	0.07				
Temperature at which Gas forms significant amount	<150°C for "cold plasma" ionization, (corona in oil) >250°C for thermal & electrical faults				
Source of Gas	Partial discharge, thermal faults, power discharges, rust, galvanized parts, stainless steel, sunlight				

Gas	METHANE				
Formula	CH4				
Solubility in Oil @ 25°C	0.44				
Solubility in Oil @ 70°C	0.44				
Temperature at which Gas forms significant amount	<150 -300°C				
Source of Gas	Corona partial discharge, low & medium temperature thermal faults				

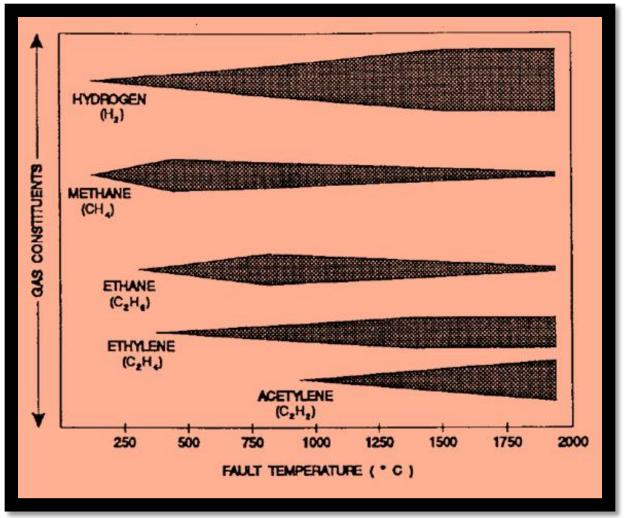
Gas	ETHANE				
Formula	C2H6				
Solubility in Oil @ 25°C	2.59				
Solubility in Oil @ 70°C	2.09				
Temperature at which Gas forms significant amount	200 -400°C				
Source of Gas	low & medium temperature thermal faults				

Gas	ETHYLENE
Formula	C2H4
Solubility in Oil @ 25°C	1.76
Solubility in Oil @ 70°C	1.47
Temperature at which Gas forms significant amount	300 -700°C
Source of Gas	High temperature thermal faults

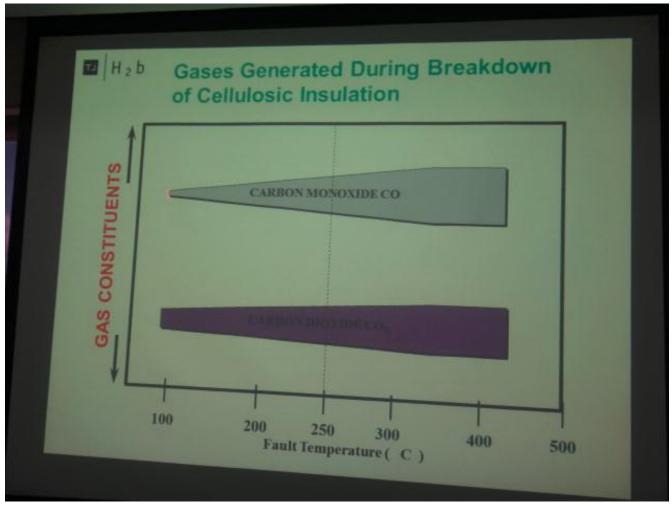
Gas	ACETYLENE				
Formula	C2H2				
Solubility in Oil @ 25°C	1.22				
Solubility in Oil @ 70°C	0.93				
Temperature at which Gas forms significant amount	>700°C				
Source of Gas	Very hot spot; low-energy discharge (spitting from floating part); high energy discharge (arc)				

Gas	CARBON MONOXIDE				
Formula	СО				
Solubility in Oil @ 25°C	0.13				
Solubility in Oil @ 70°C	0.12				
Temperature at which Gas forms significant amount	105 -300°C (complete decomposition & carbonization occurs >300°C				
Source of Gas	Thermal fault involving cellulose (paper, pressboard, wood blocks); slowly from oil oxidation				

Gas	CARBON DIOXIDE				
Formula	CO2				
Solubility in Oil @ 25°C	1.17				
Solubility in Oil @ 70°C	1.02				
Temperature at which Gas forms significant amount	105 -300°C				
Source of Gas	Normal aging (accelerated by amount of O2-in-oil & H2O-in-paper); thermal fault involving cellulose (paper, pressboard, wood blocks); accumulation from oil oxidation.				



Gas	OXYGEN				
Formula	02				
Solubility in Oil @ 25°C	0.18				
Solubility in Oil @ 70°C	0.17				
Temperature at which Gas forms significant amount	Following drop in oil temperature (vacuum)				
Source of Gas	Exposure to atmosphere (air), leaky gasket (under vacuum), air breathing conservator, leaky bladder.				


Gases generated during breakdown of dielectric oil

Gases Generated During Breakdown of Cellulosic Insulation

Gas Analyzed by DGA

- Hydrogen*, H₂
- Methane*, CH₄
- Ethane^{*}, C_2H_6
- Ethylene^{*}, C_2H_4
- Acetylene*, C
 ₂H₂
- Carbon monoxide*, CO
- Carbon dioxide, CO₂
- Oxygen, O₂
- Nitrogen, N
 ₂
- TDCG (Total Dissolved Combustible Gases) TDCG=H2+CH4+C2H6+C2H4+C2H2+CO
 - * denotes combustible gas

Solubility of Gases in Transformer Oil

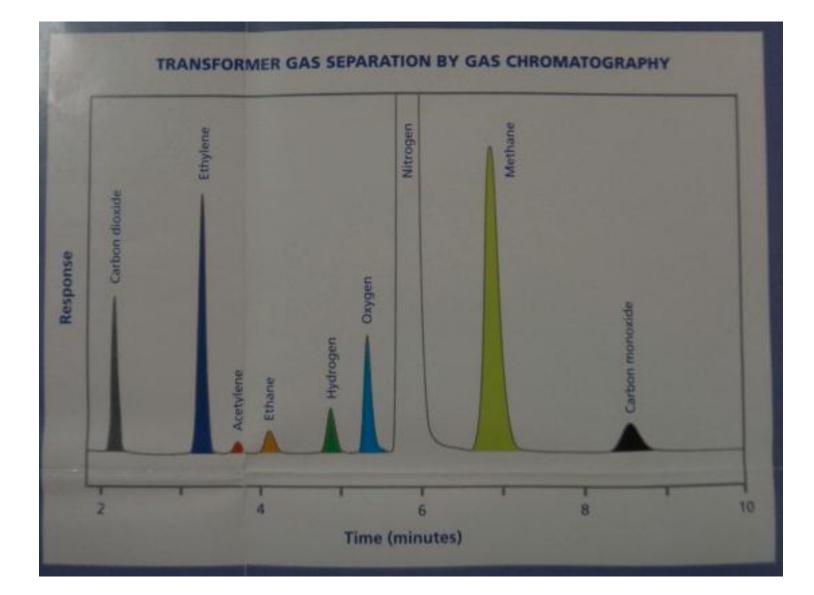
- Hydrogen*
- Oxygen
- Nitrogen
- Methane*
- Carbon Monoxide*

* denotes combustible gas

- Ethane*
- Carbon Dioxide
- Ethylene*
- Acetylene*

 $\begin{array}{cccccccc} H_2 & 7. \\ O_2 & 16 \\ N_2 & 8. \\ CH_4 & 36 \\ CO & 9. \\ C_2H_6 & 28 \\ CO_2 & 12 \\ C_2H_4 & 28 \\ C_2H_4 & 28 \\ C_2H_4 & 46 \end{array}$

7.0% by volume
16.0% by volume
8.6% by volume
30.0% by volume
9.0% by volume
280.0% by volume
120.0% by volume
280.0% by volume
400.0% by volume



ANALYSIS

- ASTM method D3612 and IEC 60567, specifies gas chromatography (GC) as the analysis method.
- The GC results are calibrated to known gas standards and normalized to standard temperature and pressure levels so that data obtained under different conditions may be compared meaningfully.
- GC separates each gas from the others and directly measures their concentrations individually.
- When recorded over time, the resulting detector signals is called a chromatogram.

Faults Detectable by DGA

Symbol	Fault	Examples
PD	Partial Discharges	Discharges of the cold plasma (corona) type in gas bubbles or voids, with the possible formation of X-wax in paper
D1	Discharges of Low Energy	Partial discharges of the sparking type, inducing pinholes, carbonized punctures in paper. Low energy arcing inducing carbonized perforation or surface tracking of paper, or the formation of carbon particles in oil.
D2	Discharge of High Energy	Discharge in paper or oil, with power follow-through, resulting in extensive damage to paper or large formation of carbon particles in oil, metal fusion, tripping of the equipment and gas alarms.
T1	Thermal Fault, T<300 °C	Evidenced by paper turning brownish (>200 °C) or carbonized (>300 °C)
T2	Thermal Fault, 300 <t<700 td="" °c<=""><td>Carbonization of paper, formation of carbon particles in oil.</td></t<700>	Carbonization of paper, formation of carbon particles in oil.
T3	Thermal Fault, T>700 °C	Extensive formation of carbon particles in oil, metal coloration (800 °C) or metal fusion (>1000 °C).

Standard and Guidelines Governing Dissolved Gas Analysis

Reference	Description
IEEE Std. C57.104.2008	IEEE Guide for the Interpretation of Gases Generated in Oil Immersed Transformers
IEEE Std. C57.12.80-2002	Terminology for Power and Distribution Transformer
IEC 60599-2007-05	Mineral Oil Impregnated Electrical Equipment in Service: Guide to the Interpretation of Dissolved and Free Gas Analysis
IEC 60599-2007-05	Reference to Duval Triangle Diagnostic Model and C2H2/H2 Ratio Interpretation

Standards and Guidelines Governing Gas Extraction From Oil

REFERENCE	DESCRIPTION
ASTM D2945-90 (2003)	Standard Test Method For Gas Content of Insulating Oils
ASTM D3305-94 (2005)	Standard Practice for Sampling Small Gas Volume in a Transformer
ASTM D3612-02 (2009)	Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography
ASTM D2759-00 (2010)	Standard Practice for Sampling Gas from a Transformer under Positive Pressure
IEC 60567-2011	Guide for the sampling of gases and oil from oil-filled electrical equipment and for the analysis of free and dissolved gases.

DGA DIAGNOSIS

INDIVIDUAL GAS AND TDCG METHOD (IEEE C57.104-2008)

<u>CONDITION 1:</u> TDCG below this level indicates the transformer is operating satisfactorily. Any individual combustible gas exceeding specified levels should prompt additional investigation.

	Dissolved key gas concentration limits in parts per million (ppm)							
C 1.1.1.1	Hydrogen	Methane	Acetylene	Ethylene	Ethane	Carbon	Carbon	TDCG
Status	(H2)	(CH4)	(C2H2)	(C2H4)	(C2H6)	Monoxide	Dioxide	
						(CO)	(CO2)	
Condition 1	100	120	2	50	65	350	2500	720

Action based on Dissolved Combustible Gas

Status	TDCG levels (ppm)	TDCG rate (ppm/day)	Sampling intervals and operating procedures for gas generation rates	
			Sampling interval	Operating procedures
Condition 1	≤ 720	>30	Monthly	Exercise caution Analyze for individual gases Determine load dependence
		10 to 30	Quarterly	Continue normal operation
		<10	Annual	

<u>CONDITION 2:</u> TDCG within this range indicates greater than normal combustible gas level. Any individual combustible gas exceeding specified levels should prompt additional investigation. Action should be taken to established trend. Faults(s) may be present.

			Dissolv	ed key gas co	oncentration	limits in pa	arts per millio	on (ppm)	
	Status	Hydrogen	Methane	Acetylene	Ethylene	Ethane	Carbon	Carbon	TDCG
		(H2)	(CH4)	(C2H2)	(C2H4)	(C2H6)	Monoxide	Dioxide	
							(CO)	(CO2)	
	Condition 2	101-700	121-400	2-9	51-100	66-100	351-570	2500-4000	721-1920

Action based on Total Dissolved Combustible Gas

	Status	TDCG levels	TDCG rate	Sampling intervals and operating procedures for gas generation rates		
500	Status	(ppm)	(ppm/day)	Sampling inter∨al	Operating procedures	
		721 to 1920	>30	Monthly	Exercise caution	
1	Condition 2		10 to 30	Monthly	Analyze for individual gases	
			<10	Quarterly	Determine load dependence	

<u>Condition 3:</u> TDCG within this range indicates a high level of decomposition. Any individual combustible gas exceeding specified levels should prompt additional investigation. Immediate action should be taken to establish trend. Fault(s) are probably present.

		Dissolved key gas concentration limits in parts per million (ppm)									
C 1	Hydrogen	Methane	Acetylene	Ethylene	Ethane	Carbon	Carbon	TDCG			
Status	(H2)	(CH4)	(C2H2)	(C2H4)	(C2H6)	Monoxide	Dioxide				
						(CO)	(CO2)				
Condition 3	701-1800	401-1000	10-35	101-200	101-150	571-1400	4001-10 000	1921-4630			

Action based on Total Dissolved Combustible Gas

Status	TDCG levels	TDCG rate		ntervals and operating procedures for gas generation rates
Status	(ppm)		Sampling inter∨al	Operating procedures
		>30	Weekly	Exercise extreme caution
Condition	3 1921 to 4630	10 to 30	Weekly	Analyze for individual gases
Condition .	1721 10 4030	<10	Monthly	Plan Outage Ad∨ise manufacturer

<u>Condition 4:</u> TDCG within this range indicates excessive decomposition of cellulose insulation and/or oil. Continued operation could result in failure of the transformer. Need to retest.

- > There some transformer operating safely under this condition, however gases are stable.
- If TDCG and individual gases are increasing significantly (>30ppm/day), the fault is active, transformer should be de-energized.

Dissolved key gas concentration limits in parts per						arts per millio	on (ppm)	
E traduce	Hydrogen	Methane	Acetylene	Ethylene	Ethane	Carbon	Carbon	TDCG
Status	(H2)	(CH4)	(C2H2)	(C2H4)	(C2H6)	Monoxide	Dioxide	
						(CO)	(CO2)	
Condition 4	>1800	>1000	>35	>200	>150	>1400	>10 000	>4630

Action based on TDCG

	Status	TDCG levels	TDCG rate		tervals and operating procedures for gas generation rates
	(ppm)		(ppm/day)	Sampling interval	Operating procedures
			>30	Daily	Consider removal from service
			10 to 30	Daily	Advise manufacturer
_ '	Condition 4	>4630 <10		Weekly	Exercise extreme caution
	condition 4	24030			Analyze for indi∨idual gases
					Plan Outage
					Ad∨ise manufacturer

- A sudden increase in key gases and the rate of gas production is more important in evaluating a transformer than the amount of gas.
- Any generation of amount of gas in ppm indicate high energy arcing. Can be generate a very hot thermal fault (1000°C)
- Acetylene generated by internal arcing, sampling should be taken weekly to determine if there is an additional generation of gas.
- If no additional acetylene is found and level is within the standard the transformer may continue in service.
- Increase of Acetylene level the transformer has an internal arc and should be taken out of service.

Operating transformer with high value of acetylene is extremely hazardous.

Table 1 – Dissolved gas concentration

		Dissolved key gas concentration limits in parts per million (ppm)*							
Status	Hydrogen (H2)	Methane (CH4)	Acetylen e (C2H2)	Ethylene (C2H4)	Ethane (C2H6)	Carbon monoxide (CO)	Carbon dioxide (CO2)	TDCG	
Condition 1	100	120	2	50	65	350	2500	720	
Condition 2	101–700	121–400	2–9	51–100	66–100	351-570	2 500-4 000	721– 1920	
Condition 3	701–1800	401–1000	10-35	101–200	101–150	571–1400	4 001–10 000	1921– 4630	
Condition 4	>1800	>1000	>35	>200	>150	>1400	>10 000	>4630	

*The number shown in Table 1 are in parts of gas per million parts of oil (ppm) volumetrically and are based on a large power transformer with several thousand gallons of oil. With a smaller oil volume, the same volume of gas will give a higher gas concentration. Small distribution transformers and voltage regulators may contain combustible gases because of the operation of internal expulsion fuses or load break switches. The status codes in table 1 are also not applicable to other apparatus in which load break switches operate under oil.

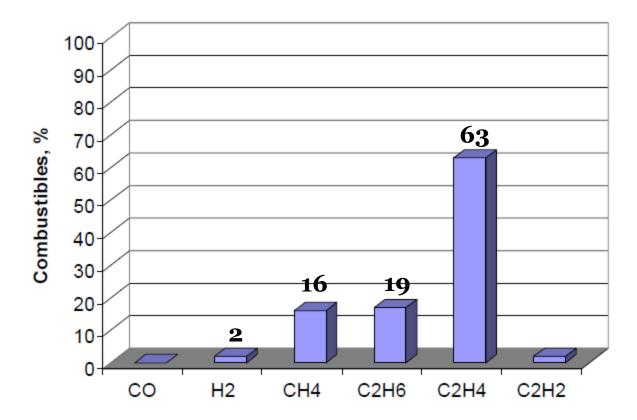
Table 2 – Action based on TDCG

	TDCG levels (μL/L)	TDCG rate (μL/L/day)		als and operating procedures as generation rates
			Sampling interval	Operating procedures
Condition 4	>4630	>30	Daily	Consider removal from service.
	-	10 to 30	Daily	Advise manufacturer.
		<10	Weekly	Exercise extreme caution. Analyze for individual gases. Plan outage. Advise manufacturer.
Condition 3	1921 to 4630	>30	Weekly	Exercise extreme caution.
		10 to 30	Weekly	Analyze for individual gases.
		<10	Monthly	Plan outage. Advise manufacturer.
Condition 2	721 to 1920	>30	Monthly	Exercise caution.
		10 to 30	Monthly	Analyze for individual gases.
		<10	Quarterly	Determine load dependence.
Condition 1	≤720	>30	Monthly	Exercise caution. Analyze for individual gases. Determine load dependence.
		10 to 30	Quarterly	Continue normal operation.
		<10	Annual	

Note:

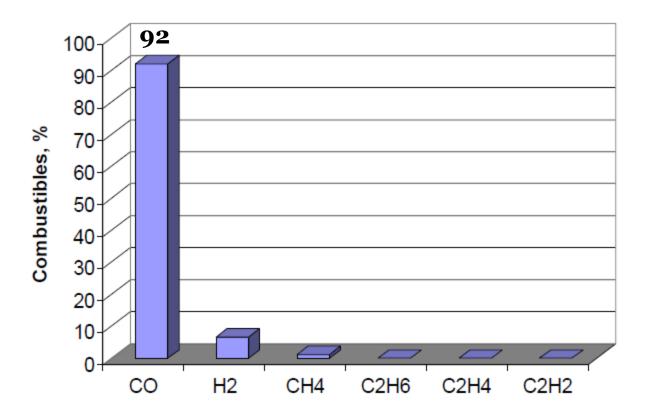
- 1. Either the HIGHEST CONDITION BASED on the INDIVIDUAL GAS or TDCG can determine the condition (1,2,3 and 4) Example If the TDCG is **1941 ppm this indicate condition 3. However Hydrogen is greater than 1800 ppm , The transformer condition 4.**
- 2. Determine Load Dependence Means if possible find out if the gas generation rate in ppm goes up or down. Perhaps the transformer is unloaded. Take sample every time load change, if load changes are too frequent this may not be possible.

Evaluation of possible fault type by the Key Gas Method


Key gases defined in the IEEE guide as "gases generated in oil-filled transformers that can be used for <u>QUALITATIVE</u> determination of faults types, based on which gases are typical or predominant at various temperatures.

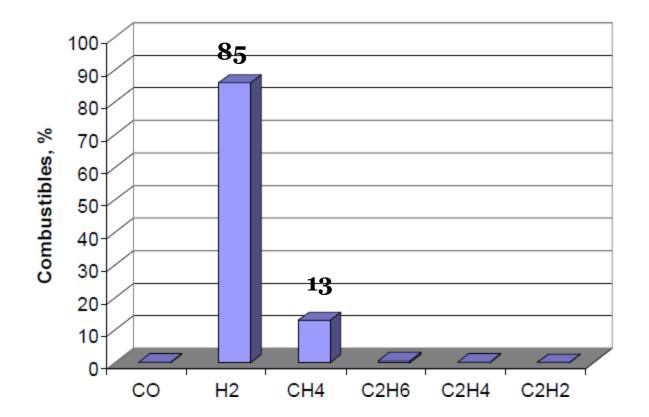
Key Gas	Fault Type	Typical proportion of generated combustible gases
Ethylene - C2H4	Thermal Oil	Decomposition products include C2H4 and CH4, together with smaller quantities of H2 and C2H6. Traces of C2H2 may be formed if the fault is severe or involves electrical contacts.
Carbon Monoxide - CO	Thermal Cellulose	Large quantities of CO2 and CO are evolved from overheated cellulose. Hydrocarbon gases. Such as CH4 and C2H4, will be formed if the fault involves an oil-impregnated structure.
Hydrogen - H2	Electrical Low Energy Partial Discharge	Low energy electrical discharges produce H2 and CH4, with small quantities of C2H6 and C2H4. Comparable amount of CO and CO2 may result from discharge in cellulose.
Acetylene - C2H2	Electrical High Energy (arcing)	Large amount of H2 and C2H2 are produced, with minor quantities of CH4 and C2H4. CO2 and CO may also formed if the fault involves cellulose. Oil may be carbonized

Overheated Oil



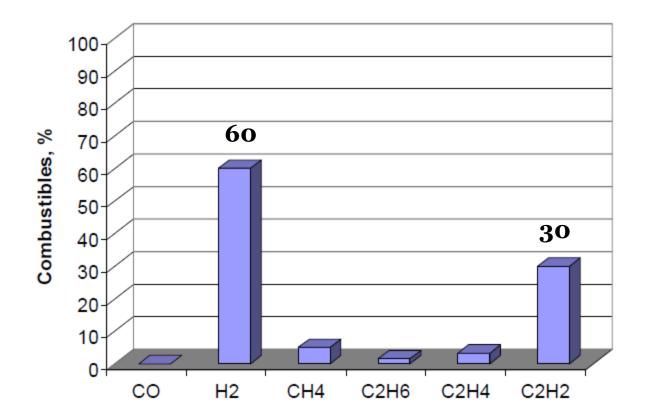
Principal Gas - Ethylene

Overheated Paper (Cellulose)



Principal Gas – Carbon Monoxide

Partial Discharge in Oil



Principal Gas – Hydrogen

Arcing in Oil

Principal Gas – Acetylene

Evaluation of possible fault type by Rogers Ratio Method (IEEE C57.104.2008)

Case	R1 CH4/H2	R2 C2H2/C2H4	R3 C2H4/C2H6	Suggested fault diagnosis
0	>0.1 to <1.0	<0.1	<1.0	Unit normal
1	<0.1	<0.1	<1.0	Low-energy density arcing-PD
2	0.1 to 1.0	0.1 to 3.0	>3.0	Arcing-High energy discharge
3	>0.1 to <1.0	<0.1	1.0 to 3.0	Low temperature thermal
4	>1.0	<0.1	1.0 to 3.0	Thermal <700°C
5	>1.0	<0.1	>3.0	Thermal >700°C

There will be a tendency for the ratios R2 and R5 to increase to a ratio above 3 as the discharge ^Aevelops in intensity

Basic Gas Ratios (IEC 60599-2007-05)

C2H2 / C2H4	CH4 / H2	C2H4 / C2H6	Suggested Fault Type
NS	<0.1	<0.2	Partial Discharge
>1.0	0.1 - 0.5	>1.0	Discharge of Low Energy (D1)
0.6 - 2.5	0.1 - 1.0	>2.0	Discharge of High Energy (D2)
NS	>1.0	<1.0	Thermal Fault, <300°C (T1)
<0.1	>1.0	1.0 – 4.0	Thermal Fault, <300°C - <700°C(T2)
<0.2	>1.0	>4.0	Thermal Fault, >700°C (T3)

NS- Non significant regardless of value

CIGRE SC15: New Guidelines for Interpretation of DGA in Oil-Filled Transformers, (Electra No.186 Oct 1999)

Name	Ratio	Value Significant	Indication
Key Ratio 1	C2H2 / C2H6	>1	Discharge
Key Ratio 2	H2 / CH4	>10	Partial Discharge
Key Ratio 3	C2H4 / C2H6	>1	Thermal Fault in Oil
Key Ratio 4	CO2 / CO	>10 indicate overheating of cellulose, <3 indicates degradation of cellulose by electrical fault	Cellulosic Degradation
Key Ratio 5	C2H2 / H2	>2 (>30ppm) indicates diffusion from OLTC or through a common conservator	In Tank Load Tap Changer

INDICATION/FAUL T GAS	CO	CO2	CH4	C2H2	C2H4	C2H6	02	H2	H20
Cellulose aging	•	•							•
Mineral oil decomposition			•	•	•	•		•	
Leaks in oil expansion systems, gaskets, welds, etc.		•					•		•
Thermal faults- Cellulose	•	•	•				•	•	
Thermal fault s in oil @ 150°C -300°C			•		TRACE	•		•	
Thermal fault s in oil @ 300ºC -700ºC			•	TRACE	•	•		•	
Thermal fault s in oil @ 700°C			•	•	•			•	
Partial Discharge			٠	TRACE				•	
Arcing			•	•	•			•	
Guidelines for surveillance range for type 1 transformer (IEEE PC57.104 D11d)	N<350 C350- 570 W>570		N<120 C120-400 W>400	N<2 C2-5 W>5	N<50 C50-100 W>100	N<65 C65-100 W>100		N<100 C100-700 W>700	
ppm for	N-normal	C- caution	W-warning						

(the second seco

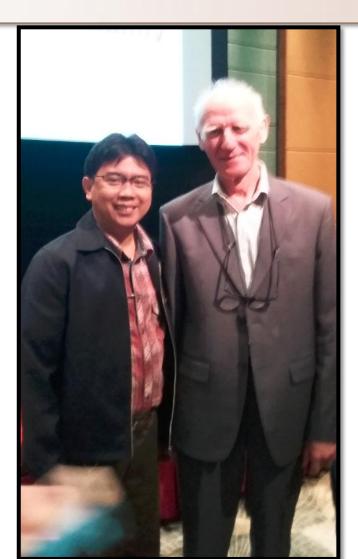
IEC 60599-2007-05

Name	Ratio	Value Significant	Indication
CO2 VS. CO Ratio	CO2 / CO	<3 Excessive	Thermal Cellulosic Degradation

NOTE: Ratio valid when levels exceed minimums: CO > 500 ppm, CO2 > 5000 ppm

C2H2 / Ratio (IEC 60599-2007-05)

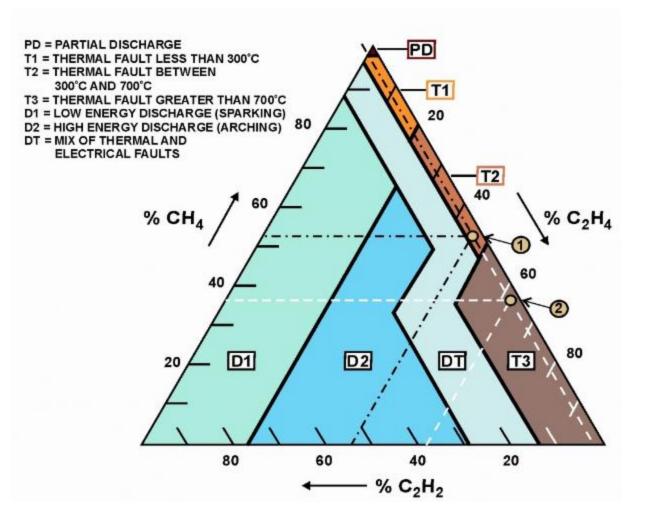
OLTC's (On Load Tap Changer) produce gases corresponding to discharges of low energy. The pattern of oil decomposition in the OLTC differs from the pattern of oil decomposition in the main tank resulting from low energy discharges.


If oil or gas contamination (communication) exists between the OLTC and the main tank, an incorrect diagnosis of the main tank may result.

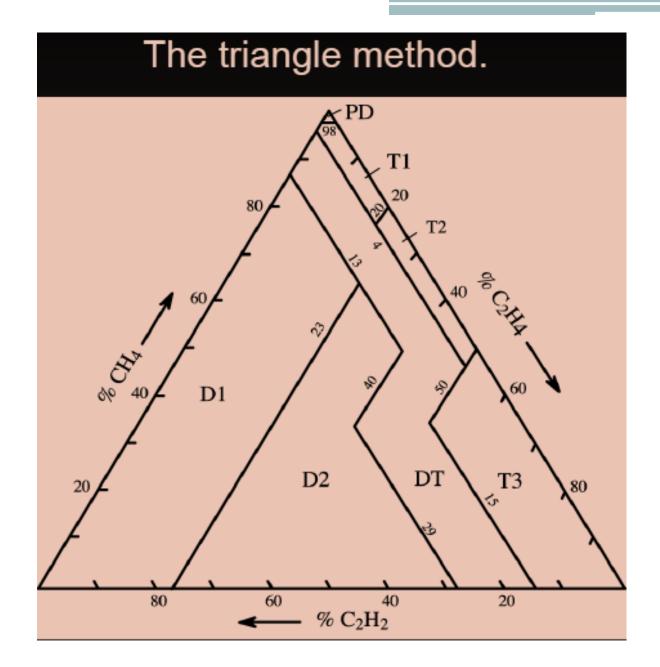
A C2H2/H2 ratio \geq 3.0 in the main tank indicates possible OLTC contamination.


Dissolve Gas Analysis by Duval Triangle

- Proposed by Michel Duval.
- Developed empirically in the early 1970's.
- Seven different fault classes could be diagnosed
- Adopted in IEC 60599



- Uses three characteristics gases CH4, C2H4, and C2H2 corresponding to the energy levels of gas formation.
- One advantage of this method is that it always provide a diagnosis, with low percentage of wrong diagnosis.



DUVAL TRIANGLE

Duval Triangle

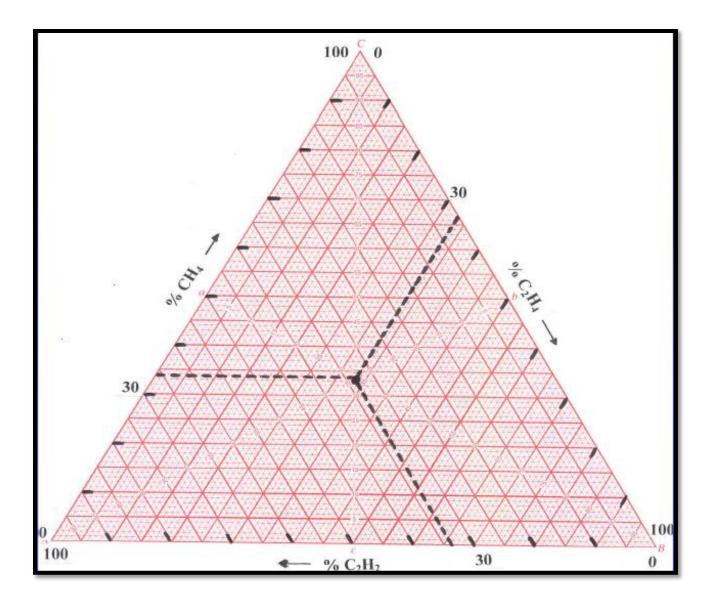
- The triangle methods plots the relative % of CH4, C2H4, and C2H2 on each side of the triangle from 0% to 100%.
- The 6 main zones of faults are indicated in the triangle, plus a DT zone (mixture of thermal and electrical faults)

How to use the triangle

If for example the DGA lab results are: $CH_4 = 100 \text{ ppm}$ $C_2H_4 = 100 \text{ ppm}$ $C_2H_2 = 100 \text{ ppm}$

First calculate: $CH_4 + C_2H_4 + C_2H_2$ 100+100+100 = 300 ppm

Then calculate the relative % of each gas:


- Relative % of CH4 = 100 / 300 = 33.3 %
- Relative % of C2H4 = 100 / 300 = 33.3 %
- Relative % of C2H2 = 100 / 300 = 33.3 %

These values are the triangular coordinates to be used on each side of the triangle.

To verify that the calculation was done correctly, the sum of these 3 values should always give 100%, and should correspond to only ONE point in the triangle.

- Each DGA analysis received from the lab will always give only ONE point in the triangle.
- The zone on which the point falls in the triangle will identify the fault responsible for the DGA results.
- The Triangle, being a graphical method allows to easily follow the evolutions of faults with time, for instance from a thermal fault to a potentially much more severe fault such as D2.
- Several software packages are available for DGA interpretation using the triangle method.

The most severe faults:

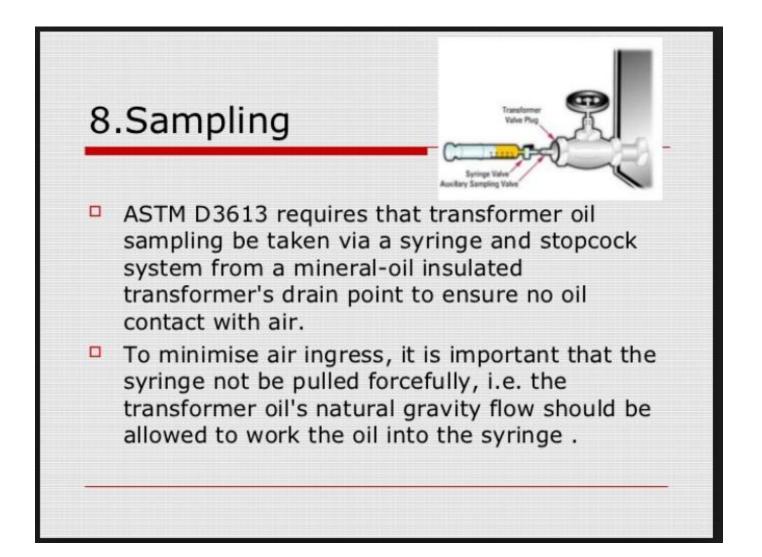
- Faults D2 in paper and in oil (high energy arcing)
- Faults T2-T3 in paper (>300°C)
- Faults D1 in paper (tracking, arcing)
- Faults T3 in oil (>700°C)

The less severe faults:

- Faults PD/D1 in oil (corona, sparking)
- Faults T1 in paper (<300°C)
- Faults T2 in oil (<700°C)

CO2 / CO Ratio

- A fault in paper is generally considered as more serious than a fault in oil only, because paper is often placed in a HV area (windings, barriers
- A popular ratio to detect paper involvement is the CO2/CO ratio.
- CO2/CO ratio = 3 to 11, a healthy cellulose insulation

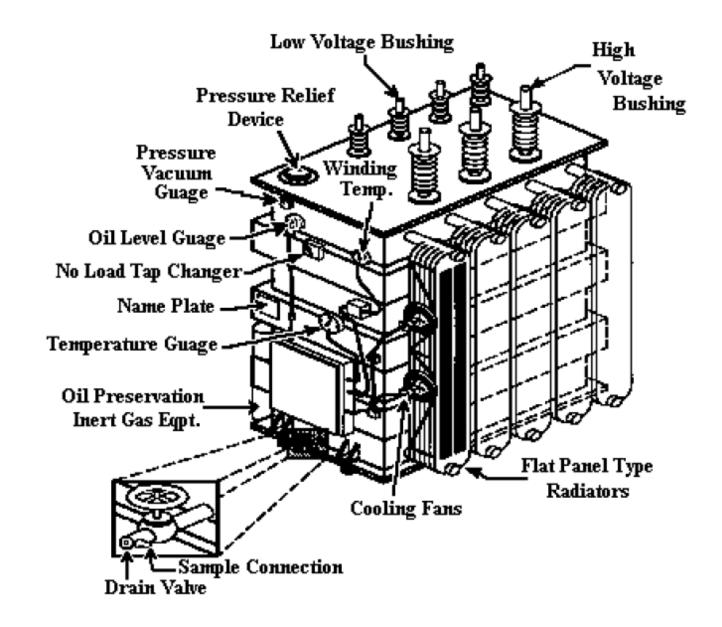


CO2 / CO Ratio

- If the CO2/CO ratio is <3, this is a strong indication of a fault in paper, either a hot spot or electrical arcing.
- If the CO2/CO ratio is >11, indicates cellulose ageing from thermal heating.
- CO2/CO ratio becomes significant when individual gases are above 5000/500 ppm.
- <u>Remember: Paper is irreversible</u>

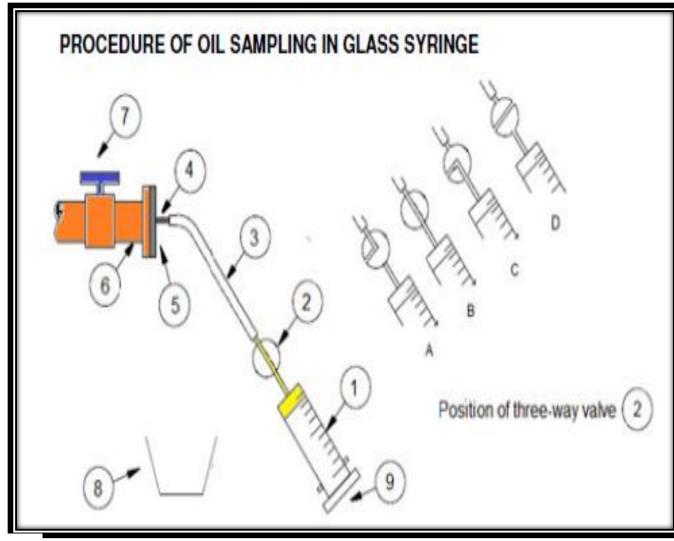
Practice Procedure of Transformer Oil Sampling: IEC 60475

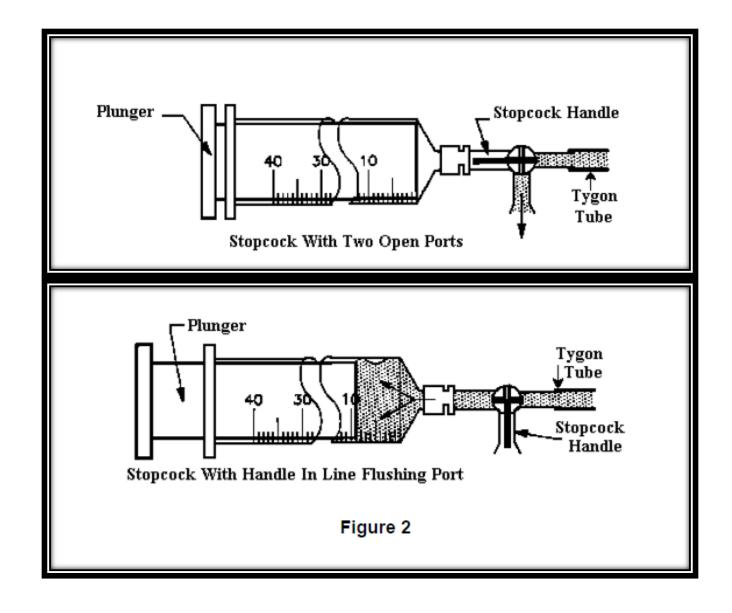
- The apparatus to be sampled should be under positive pressure. For transformer sealed with an inert gas, check the pressure gauge to make it sure it does not indicate a negative pressure.
- To ensure that the vacuum will not draw air into the transformer, attach a length of Tygon tubing filled with clean oil to the sampling valve before cracking the valve open.
- Carefully observe the direction of oil movement in the tube and close the valve immediately if the oil flow is towards the transformer.



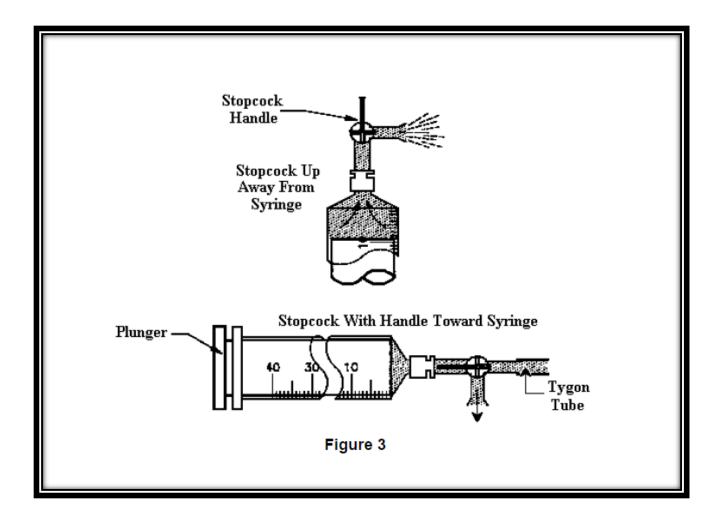
Sampling Procedure

- Do not allow air to be drawn into the transformer. Air can only enter the transformer when it is under a vacuum condition.
- The valve through which the sample is to be taken should be flushed by allowing about half of a gallon of oil to flow to a waste container.





LEGEND: 1-50ml glass syringe 2-three-way syringe valve 3-tygon tube 4-nozzle 5-adapter 6-sampling port 7-drain valve 8-waste container 9-syringe plunger



APRI - MAKBAN GEOTHERMAL POWER PLANT DISSOLVED GAS ANALYSIS REPORT EQUIPMENT USED: KELLMAN PORTABLE DGA ANALYZER "TRANSPORT X"

Analysis Report	Anal	ysis	Re	port
-----------------	------	------	----	------

	IEEE													TJH2B LAST TEST	Furans/Paper Com
	·													=	
Date Sampled Time Sampled	Action Limts	30-Nov-10 1000H	28-Dec-10 1000H	15-Apr-11 1000H	26-Apr-11 1000H	23-May-11 1000hrs	22-Dec-11 1000hrs	21-Jun-12 1000hrs	16-Jul-12 1400	29-Oct-12 1000H	17-Mar-13 1000H	27-Jul-13 1300H	29-Jul-13 1000H	23-Oct-12	Estimated DP (from Fi
lo. of days interval			28	108	11	27	213	182	25	105	139	132	2		
oad in MW														Potential 3	
/inding Temp. in ⁰ C															
)il Temp. in ⁰C				<u>50</u>	48	47	38	37	48						
i-electric Strenght, kV	20.0 min.					31	32	14	9.9	36.8	30	25	14		
relevant Strength, kv	20.0 mm.						52		0.0	30.0		20			
loisture , ppm	20.0 max.								19.5						
															000
AN, mg KOH/g sample	0.030 max.														339
issolved Gases in ppm V/V :															Paper condition
ydrogen (H2)	700	76	82	54	48	50	34	17	12	16	25	255	369	80	severely reduced. P
xygen (O)	-								-					8554	end of life and ma
trogen (N)														66627	exposure to ris
arbon Monoxide (CO)	570	639	615	493	445	458	519	479	455	513	464	627	593	521	exposure to fit
ethane (CH4)	400	123	124	145	132	145	166	132	106	97	128	846	760	112	
arbon Dioxide (CO2)	400	12004	124	140	9140	9353	10674	7047	6239	7126	6371	7380	6517	2735	
cetylene (C2H2)	5	12004	0	0	0	0	0	0.5	0.5	0	0	201.9	320.8	<1	
thylene (C2H2)	100	121	124	171	159	172	230	204	190	197	341	1629	1484	160	
	100	51		80	92	97	109	139		130	131	614	548	117	
thane (C2H6) /ater (H2O)	100	36	42	52	54	56	43	69	149 72	57	72	85	83		
					32.9%	35.5%						65	65		
S of Oil DCG	1900	28.5% 1008	36.1% 985	49.9% 941	32.9%	35.5% 920	38.9% 1055	41.7% 972	43.40% 912	40.50% 949	66.50% 1086	4173	4075	990	

Sampled/Test/Analyzed:

IÑIGO V. ESCOPETE, JR. Condition Monitoring Engineer-TSG JOSEPHINE C. PUCYUTAN Manager, Technical Support Group

Noted:

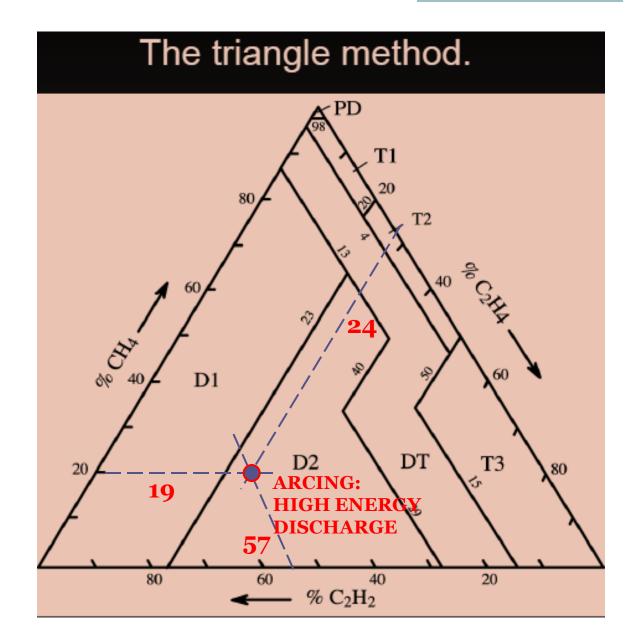
Cc:

JM MARALIT

Facility Manager

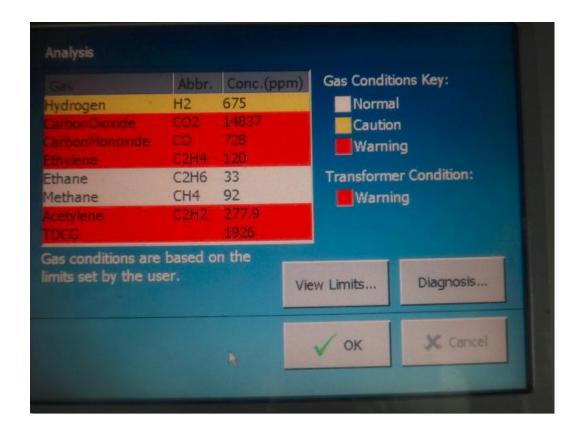
KR BEAVERS SVP Operations-APRI

Gas Hydrogen	Abbr.		Warning	1
CarbonDioxide	H2 CO2	100 2500	700 4000	
CarbonMonoxide Ethylene	CO C2H4	350 50	570 100	
Ethane Methane	C2H6 CH4	65	100	
Acetylene	C2H2	120 2	400 5	
IDCG	The Party	700	1900	



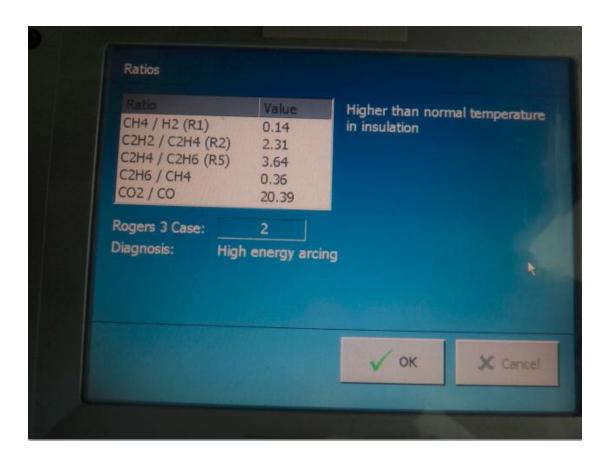
Duval Computation

 $C_{2H2} + CH_{4} + C_{2H4}$ 280 + 92 + 120 =**492**



Rogers Ratio Computation

R1 = CH4 / H2
= 92 / 675
=
$$0.136$$
 (CASE 2)
R2 = C2H2 / C2H4
= 280 / 120
= 2.33 (CASE 2)
R3 = C2H4 / C2H6
= $120 / 33$
= 3.63 (CASE 2)


CASE 2 = <u>ARCING – HIGH ENERGY DISCHARGE</u>

