

SHORT CIRCUIT CALCULATIONS REVISITED

FORTUNATO C. LEYNES

Chairman Professional Regulatory Board of Electrical Engineering Professional Regulation Commission

Short Circuit (Fault) Analysis

• FAULT-PROOF SYSTEM

- ➢ not practical
- neither economical
- faults or failures occur in any power system

In the various parts of the electrical network under short circuit or unbalanced condition, the determination of the magnitudes and phase angles

- Currents
- Voltages
- Impedances

Application of Fault Analysis

- 1. The determination of the required mechanical strength of electrical equipment to withstand the stresses brought about by the flow of high short circuit currents
- 2. The selection of circuit breakers and switch ratings
- 3. The selection of protective relay and fuse ratings

Application of Fault Analysis

- 4. The setting and coordination of protective devices
- 5. The selection of surge arresters and insulation ratings of electrical equipment
- 6. The determination of fault impedances for use in stability studies
- 7. The calculation of voltage sags caused resulting from short circuits

Application of Fault Analysis

- 8. The sizing of series reactors to limit the short circuit current to a desired value
- 9. To determine the short circuit capability of series capacitors used in series compensation of long transmission lines
- 10. To determine the size of grounding transformers, resistances, or reactors

Per Unit Calculations

$Z_{B} = \frac{(base voltage, kV_{L-L})^{2} \times 1000}{base kVA_{3\Phi}}$ $Z_{B} = \frac{(base voltage, kV_{L-L})^{2}}{base MVA_{3\Phi}}$

Per Unit Quantities

 $I_{pu} = \frac{actual \ current}{Base \ Current \ (I_{B})}$ $V_{pu} = \frac{actual \ voltage \ (kV)}{Base \ Voltage \ (kV_{R})}$ $Z_{pu} = \frac{actual\ impedance}{Base\ impedance} (Z_{B})$

Changing the Base of Per Unit Quantities

$$Z_{pu[old]} = \frac{actual impedance, Z(\Omega)}{(base kV_{[old]})^2 \times 1000}$$

$$base kVA_{[old]}$$

$$Z(\Omega) = \frac{Z_{pu[old]}(base kV_{[old]})^2 \times 1000}{base kVA_{[old]}}$$

$$Z_{B[new]} = \frac{(base kV_{[new]})^2 \times 1000}{base kVA_{[new]}}$$

$$Z_{pu[new]} = \frac{Z(\Omega)}{Z_{B[new]}}$$

Changing the Base of Per Unit Quantities

$$Z_{pu[old]} = \frac{actual impedance, Z(\Omega)}{(base kV_{[old]})^2 \times 1000}$$

$$base kVA_{[old]}$$

$$Z(\Omega) = \frac{Z_{pu[old]}(base kV_{[old]})^2 \times 1000}{base kVA_{[old]}}$$

$$Z_{B[new]} = \frac{(base kV_{[new]})^2 \times 1000}{base kVA_{[new]}}$$

$$Z_{pu[new]} = \frac{Z(\Omega)}{Z_{B[new]}}$$

ions

kVA/hp	hp rating
1.00	Induction < 100 hp
1.00	Synchronous 0.8 pf
0.95	Induction 100 < 999 hp
0.90	Induction > 1000 hp
0.80	Synchronous 1.0 pf

SYMMETRICAL COMPONENTS

V_{b1} Positive Sequence

 V_{a1}

$$V_{a0} = V_{b0} = V_{c0}$$

Zero Sequence

Short Circuit Calculations IIEE Presentation

 V_{c1}

Negative Sequence

 V_{c}

 V_b

 V_{c}

 V_{b2}

 V_{c0}

 V_{b0}

 V_{c1}

 V_{c2}

 V_{a2}

 V_{a2}

 V_{a1}

Unbalanced Phasors

 V_{b1}

Symmetrical Components of Unbalanced Three-phase Phasor

$$V_{a} = V_{a0} + V_{a1} + V_{a2}$$

$$V_{a0} = \frac{1}{3} (V_{a} + V_{b} + V_{c})$$

$$V_{b} = V_{a0} + a^{2}V_{a1} + aV_{a2}$$

$$V_{a1} = \frac{1}{3} (V_{a} + aV_{b} + a^{2}V_{c})$$

$$V_{c} = V_{a0} + aV_{a1} + a^{2}V_{a2}$$

$$V_{a1} = \frac{1}{3} (V_{a} + aV_{b} + a^{2}V_{c})$$

$$V_{a2} = \frac{1}{2} (V_{a} + a^{2}V_{b} + aV_{c})$$

5

Symmetrical Components of Unbalanced Three-phase Phasor

In matrix form:

$$\begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} V_{a0} \\ V_{a1} \\ V_{a1} \\ V_{a2} \end{bmatrix} \begin{bmatrix} V_{a0} \\ V_{a1} \\ V_{a1} \\ V_{a2} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} V_a \\ V_a \\ V_b \\ V_c \end{bmatrix}$$

Power System Short Circuit Calculations

Sequence Networks

Fault Point

The fault point of a system is that point to which the unbalanced connection is attached to an otherwise balanced system.

Definition of Sequence Networks

 Z_1

E_{a1}

V_{a1}

Positive-sequence Network

 $E_{a1} =$

 $Z_1 =$

Thevenin's equivalent voltage as seen at the fault point

Thevenin's equivalent impedance as seen from the fault point

 $V_{a1} = E_{a1} - I_{a1}Z_1$

Definition of Sequence Networks

a2

 V_{a2}

 Z_2

Negative-sequence Network

Thevenin's equivalent
negative-sequence
impedance as seen at
the fault point

$$V_{a2} = -I_{a2}Z_2$$

Short Circuit Calculations IIEE Presentation

 $Z_{2} =$

Definition of Sequence Networks

a0

V_{a0}

 Z_0

Zero-sequence Network

Thevenin's equivalent zero-sequence impedance as seen at the fault point

$$V_{a0} = -I_{a0}Z_0$$

Short Circuit Calculations IIEE Presentation

 $Z_0 =$

Power System Short Circuit Calculations

Sequence Network Models of Power System Components

Synchronous Machines (Positive Sequence Network)

l_{a1}

 Z_1

Ea1

V_{a1}

Synchronous Machines (Negative Sequence Network)

 Z_2

V_{a2}

$$Z_{2} = j \frac{x''_{d} + x''_{q}}{2}$$

Where:

 x''_{d} = direct-axis sub-transient reactance

 x''_{a} = quadrature-axis sub-transient reactance

jΧ₀

Solidly-Grounded Neutral

n

ground

Impedance-Grounded Neutral

Ungrounded-Wye or Delta Connected Generators

n

JX

ground

Two-Winding Transformers (Positive Sequence Network)

Three-Winding Transformers (Positive Sequence Network)

Standard Symbol

$$Z_{ps} = Z_p + Z_s$$
$$Z_{pt} = Z_p + Z_t$$
$$Z_{st} = Z_s + Z_t$$

Short Circuit Calculations IIEE Presentation Equivalent Positive-Sequence Network

$$Z_{p} = \frac{1}{2} (Z_{ps} + Z_{pt} - Z_{st})$$

$$Z_s = \frac{1}{2} \left(Z_{ps} + Z_{st} - Z_{pt} \right)$$

$$Z_t = \frac{1}{2} \left(Z_{pt} + \overline{Z}_{st} - \overline{Z}_{ps} \right)$$

Transformers (Negative Sequence Network)

The negative-sequence network of twowinding and three-winding transformers are modeled in the same way as the positive-sequence network since the positive-sequence and negative-sequence impedances of transformers are equal.

(Thanks to Engr. Antonio C. Coronel, Retired VP, Meralco, and former member, Board of Electrical Engineering)

Grounded wye – Grounded wye

Grounded wye – Ungrounded wye

Grounded wye – Delta

Delta – Delta

Transformers (Zero-Sequence Circuit Model)

Transformer Connection Zero-Sequence Circuit Equivalent

ZPO

Z_{PQ}

Q

Transformers (Zero-Sequence Circuit Model)

Q

Transformer Connection Zero-Sequence Circuit Equivalent

Z_{PQ}

Z_{PO}

Q

Transformers (Zero-Sequence Circuit Model)

Transformers (Zero-Sequence Circuit Model)

Transformer Connection Zero-Sequence Circuit Equivalent

Transmission Lines (Positive Sequence Network)

 Z_1

ra

Transmission Lines (Negative Sequence Network)

The same model as the positive-sequence network is used for transmission lines inasmuch as the positive-sequence and negative-sequence impedances of transmission lines are the same

Transmission Lines (Zero Sequence Network)

The zero-sequence network model for a transmission line is the same as that of the positive- and negative-sequence networks. The sequence impedance of the model is of course the zero-sequence impedance of the line. This is normally higher than the positive- and negative-sequence impedances because of the influence of the earth's resistivity and the ground wire/s.

Power System Short Circuit Calculations

Classification of Power System Short Circuits

Shunt Faults

Single line-to-ground faults
 Double line-to-ground faults
 Line-to-line faults
 Three-phase faults

Series Faults

One-line open faultsTwo-line open faults

Combination of Shunt and Series Faults

Single line-to-ground and one-line open
 Double line-to-ground and one-line open faults
 Line-to-line and one-line open faults
 Three-phase and one-line open faults

Combination of Shunt and Series Faults

Single line-to-ground and two-line open faults
 Double line-to-ground and two-line open faults
 Line-to-line and two-line open faults
 Three-phase and two-line open faults

Balanced Faults

Symmetrical or Three-Phase Faults

Derivation of Sequence Network Interconnections

Z_f

+

V_{a2}

l_{a2}

 Z_2

I_{a0}

 Z_0

+

 V_{a0}

Unbalanced Faults

Single Line-to-Ground Faults

Derivation of Sequence Network Interconnections

3Z_f

 $I_{a0} = I_{a1} = I_{a2} = \frac{E_{a1}}{Z_0 + Z_1 + Z_2 + 3Z_f}$ If $Z_f = 0$ $I_{a0} = I_{a1} = I_{a2} = \frac{E_{a1}}{Z_0 + Z_1 + Z_2}$ $Z_1 = Z_2$ $I_{a0} = I_{a1} = I_{a2} = \frac{E_{a1}}{Z_0 + 2Z_1}$ $I_f = I_a = I_{a0} + I_{a1} + I_{a2} = 3I_{a1} = 3I_{a0}$ If $Z_f = 0$ and $Z_1 = Z_2$ $I_f = I_a = \frac{3E_{a1}}{Z_0 + 2Z_1}$

Unbalanced Faults

Line-to-Line Faults

$$I_{a1} = \frac{E_{a1}}{Z_1 + Z_2 + Z_f}$$

If $Z_f = 0$ and $Z_1 = Z_2$
 $I_{a1} = \frac{E_{a1}}{2Z_1}$

The fault current

$$I_f = I_b = -I_c = I_{a0} + a^2 I_{a1} + a I_{a2}$$

 $I_{ao} = 0; \quad I_{a1} = -I_{a2}$
 $I_f = (a^2 - a)I_{a1} = -j\sqrt{3}I_{a1}$

if Z_f

$$I_f = -j\sqrt{3} \left[\frac{E_{a1}}{2Z_1 + Z_f} \right]$$

$$= 0$$

$$|I_{f}| = \left| -j \frac{\sqrt{3}E_{a1}}{2Z_{1}} \right| = \left(\frac{\sqrt{3}}{2}\right) \frac{E_{a1}}{Z_{1}}$$

$$I_{f[3\phi]} = \frac{E_{a1}}{Z_{1}}$$

$$I_{f[L-L]} = \frac{\sqrt{3}}{2} I_{f[3\phi]}$$

Unbalanced Faults

Double-to-line Ground Fault

Derivation of Sequence Network Interconnections

Boundary conditions:

$$I_a = 0$$

$$V_b = I_b Z_f + (I_b + I_c) Z_g$$

$$V_c = I_c Z_f + (I_b + I_c) Z_g$$

Eq'n BC-1 Eq'n BC-2 Eq'n BC-3

Negative-sequence Component:

$$I_{a2} = -I_{a1} \left(\frac{Z_0 + Z_f + 3Z_g}{Z_2 + Z_0 + 2Z_f + 3Z_g} \right)$$

Zero-sequence Component:

$$I_{a0} = -I_{a1} \left(\frac{Z_2 + Z_f}{Z_2 + Z_0 + 2Z_f + 3Z_g} \right)$$

The fault current

$$I_{f} = I_{b} + I_{c} = (I_{a0} + a^{2}I_{a1} + aI_{a2}) + (I_{a0} + aI_{a1} + a^{2}I_{a2})$$

$$I_{f} = 2I_{a0} + (a^{2} + a)I_{a1} + (a + a^{2})I_{a2}$$

$$I_{f} = 2I_{a0} + (-1)I_{a1} + (-1)I_{a2} = 2I_{a0} - (I_{a1} + I_{a2})$$
but $I_{a0} + I_{a1} + I_{a2} = 0$; or $I_{a0} = -(I_{a1} + I_{a2})$
thus, $I_{f} = 3I_{a0}$

If $Z_f = Z_g = 0$ and $Z_1 = Z_2$ $=\frac{E_{a1}}{Z_1 + \frac{Z_1 Z_0}{Z_1 + Z_0}} = \frac{(Z_1 + Z_0)E_{a1}}{Z_1^2 + 2Z_1 Z_0}$ $I_{a2} = -I_{a1} \left(\frac{Z_0}{Z_1 + Z_0} \right) = - \left(\frac{E_{a1}}{Z_1 + \frac{Z_1 Z_0}{Z_1 + \frac{Z_1 Z_0}{Z_1 + Z_0}}} \right) \left(\frac{Z_0}{Z_1 + Z_0} \right)$ $\frac{Z_0 E_{a1}}{Z_1^2 + 2Z_1 Z_0}$ Short Circuit Calculations

Short Circuit Calculation

If $Z_f = Z_g = 0$ and $Z_1 = Z_2$ $I_{a1} = \frac{E_{a1}}{Z_1 + \frac{Z_1 Z_0}{Z_1 + Z_0}} = \frac{(Z_1 + Z_0)E_{a1}}{Z_1^2 + 2Z_1 Z_0}$

$$I_{a2} = -I_{a1} \left(\frac{Z_0}{Z_1 + Z_0} \right) = - \left(\frac{E_{a1}}{Z_1 + \frac{Z_1 Z_0}{Z_1 + Z_0}} \right) \left(\frac{Z_0}{Z_1 + Z_0} \right) =$$

$$-\frac{Z_0 E_{a1}}{Z_1^2 + 2Z_1 Z_0}$$

$$I_{a0} = -I_{a1} \left(\frac{Z_1}{Z_1 + Z_0} \right) = \left(\frac{E_{a1}}{Z_1 + \frac{Z_1 Z_0}{Z_1 + \frac{Z_1 Z_0}{Z_1 + Z_0}}} \right) \left(\frac{Z_1}{Z_1 + Z_0} \right)$$

$$=\frac{Z_1 E_{a1}}{Z_1^2 + 2Z_1 Z_0} = \frac{E_{a1}}{Z_1 + 2Z_0}$$

ons $I_f = 3I_{a0} = \frac{3E_{a1}}{Z_1 + 2Z_0}$

Voltage Rise Phenomenon

Single-to-line Ground Fault

Unfaulted Phase B Voltage During Single Line-to-Ground Faults

$$V_{b} = V_{a0} + a^{2}V_{a1} + aV_{a2}$$

$$V_{b} = -\left(\frac{E_{a1}}{2Z_{1} + Z_{0}}\right)Z_{0} + a^{2}\left[E_{a1} - \left(\frac{E_{a1}}{2Z_{1} + Z_{0}}\right)Z_{1}\right] - a\left(\frac{E_{a1}}{2Z_{1} + Z_{0}}\right)Z_{1}$$

$$V_{b} = E_{a1}\left[a^{2} - \left(\frac{Z_{0} - Z_{1}}{2Z_{1} + Z_{0}}\right)\right] = E_{a1}\left[a^{2} - \left(\frac{Z_{1}}{Z_{1}}\right)\left(\frac{Z_{0}}{2} - \frac{1}{Z_{1}}\right)\right]$$

$$V_{b} = E_{a1}\left[a^{2} - \left(\frac{Z_{0}}{Z_{1}} - \frac{1}{Z_{1}}\right)\right]$$
neglecting resistances R and R :

neglecting resistances, \mathbf{N}_1 and \mathbf{N}_0 ,

$$V_b = E_{a1} a^2 - \left(\frac{\frac{X_0}{X_1} - 1}{2 + \frac{X_0}{X_1}}\right)$$

culations

Short Circuit Calo **IIEE Presentation**

Unfaulted Phase B Voltage During Single Line-to-Ground Faults

Neglecting resistances R0 & R1

Fault MVA

where, for $E_{a1} = 1.0$ p.u.;

 $I_{F(3\phi)} = \frac{1}{Z_1}$

for three – phase fault in p.u.:

for singe line - to - ground fault in p.u.:

$$I_{F(SLG)} = \frac{3}{Z_0 + 2Z_1}$$

Fault MVA

Three – phase fault MVA: $MVA_{F(3\phi)} = I_{F(3\phi)}(p.u.) \times MVA_{base}$ $Z_1 = \frac{1}{I_{F(3\phi)}} \quad p.u.$ Single line-to-ground fault MVA: $MVA_{F(SLG)} = I_{F(SLG)}(p.u.) \times MVA_{base}$ $2Z_1 + Z_0 = \frac{3}{I_{F(SLG)}} p.u.$ $Z_0 = \frac{3}{I_{F(SLG)}} - 2Z_1$

Assumptions Made to Simplify Fault Calculations

- 1. Pre-fault load currents are neglected.
- 2. Pre-fault voltages are assumed equal to 1.0 per unit.
- 3. Resistances are neglected (only for 115kV & up).
- 4. Mutual impedances, when not appreciable are neglected.
- 5. Off-nominal transformer taps are equal to 1.0 per unit.
- 6. Positive- and negative-sequence impedances are equal.

Outline of Procedures for Short Circuit Calculations

- 1 Setup the network impedances expressed in per unit on a common MVA base in the form of a single-line diagram
- 2 Determine the single equivalent (Thevenin's) impedance of each sequence network.
- 3 Determine the distribution factor giving the current in the individual branches for unit total sequence current.

Outline of Procedures for Short Circuit Calculations

- 4 Interconnect the three sequence networks for the type of fault under considerations and calculate the sequence currents at the fault point.
- 5 Determine the sequence current distribution by the application of the distribution factors to the sequence currents at the fault point
- 6 Synthesize the phase currents from the sequence currents.

Outline of Procedures for Short Circuit Calculations

- 7 Determine the sequence voltages throughout the networks from the sequence current distribution and branch impedances
- 8 Synthesize the phase voltages from the sequence voltage components
- 9 Convert the pre unit currents and voltages to actual physical units

CIRCUIT BREAKING SIZING (Asymmetrical Rating Factors)

Momentary Rating
 Multiplying Factor = 1.6

Interrupting Rating
 Multiplying Factor
 8 cycles = 1.0
 5 cycles = 1.1
 3 cycles = 1.2
 1 ½ cycles = 1.5

EXAMPLE PROBLEM

In the power system shown, determine the momentary and interrupting ratings for primary and secondary circuit breakers of transformer T2.

Solution:

Equivalent 69kV system@100MVA:

$$I_{F(3\phi)} = \left[\frac{800}{100}\right] = 8pu$$
$$I_{F(SLG)} = \left[\frac{1000}{100}\right] = 10pu$$
$$x_1 = \frac{1}{8} = 0.125pu$$
$$x_0 = \frac{3}{10} - 2 \times 0.125 = 0.05pu$$

T1:

$$x = 0.08 \left[\frac{100}{30} \right] = 0.2667 \, pu$$
G1:

$$x'' = 0.10 \left[\frac{100}{25} \right] = 0.40 \, pu$$

$$x_0 = 0.06 \left[\frac{100}{25} \right] = 0.24 \, pu$$
T2, T3, T3:

$$x = 0.06 \left[\frac{100}{75} \right] = 0.80 \, pu$$
M1, M2: kVAB = 0.9 × 5000 = 4500
or MVAB = 4.5

$$x = 0.15 \left[\frac{100}{4.5} \right] = 3.3333 \, pu$$

Solution:

Positive sequence network:

Solution:

Zero sequence network:

Improper Sequence Network Models

Improper Sequence Network Models

Case 1 Power System Diagram

IIEE Presentation

Improper Sequence Network Models

IIEE Presentation

Incorrect Sequence Network Models

ONE LINE DIAGRAM

Short Circuit Calculat IIEE Presentation w/ group of small motors motors (hundreds HP)

QUESTIONS?

2