SHORT CIRCUIT CALCULATIONS REVISITED

FORTUNATO C. LEYNES

Chairman
 Professional Regulatory

Board of Electrical Engineering
Professional Regulation Commission

Short Circuit (Fault) Analysis

- FAULT-PROOF SYSTEM
> not practical
$>$ neither economical
$>$ faults or failures occur in any power system
- In the various parts of the electrical network under short circuit or unbalanced condition, the determination of the magnitudes and phase angles
$>$ Currents
$>$ Voltages
> Impedances

Application of Fault Analysis

1. The determination of the required mechanical strength of electrical equipment to withstand the stresses brought about by the flow of high short circuit currents
2. The selection of circuit breakers and switch ratings
3. The selection of protective relay and fuse ratings

Application of Fault Analysis

4. The setting and coordination of protective devices
5. The selection of surge arresters and insulation ratings of electrical equipment
6. The determination of fault impedances for use in stability studies
7. The calculation of voltage sags caused resulting from short circuits

Application of Fault Analysis

8. The sizing of series reactors to limit the short circuit current to a desired value
9. To determine the short circuit capability of series capacitors used in series compensation of long transmission lines
10. To determine the size of grounding transformers, resistances, or reactors

Per Unit Calculations

Short C ircuit Calculations

 IIEE Presentation
Three-phase Systems

$$
Z_{B}=\frac{\left(\text { base voltage, } k V_{L-L}\right)^{2} \times 1000}{\text { base } k V A_{3 \Phi}}
$$

$$
Z_{B}=\frac{\left(\text { base voltage, } k V_{L-L}\right)^{2}}{\text { base } M V A_{3 \Phi}}
$$

Per Unit Quantities

$$
\begin{aligned}
I_{p u} & =\frac{\text { actual current }}{\text { Base Current }\left(I_{B}\right)} \\
V_{p u} & =\frac{\operatorname{actual} \text { voltage }(\mathrm{kV})}{\text { Base Voltage }\left(k V_{B}\right)} \\
Z_{p u} & =\frac{\text { actual impedance }}{\text { Base impedance }\left(Z_{B}\right)}
\end{aligned}
$$

Changing the Base of Per Unit Quantities

$$
\begin{gathered}
Z_{p u[\text { old }]}=\frac{\text { actual impedance, } Z(\Omega)}{\frac{\left(\text { base } k V_{[\text {old }]}\right)^{2} \times 1000}{\text { base } k V A_{[o l d]}}} \\
Z(\Omega)=\frac{Z_{p u[\text { old }]}\left(\text { base } k V_{[o l d]}\right)^{2} \times 1000}{\text { base } k V A_{[\text {old }]}} \\
Z_{B[\text { new }]}=\frac{\left(\text { base } k V_{[\text {new }]}\right)^{2} \times 1000}{\text { base } k V A_{[\text {new }]}} \\
Z_{p u[\text { new }]}=\frac{Z(\Omega)}{Z_{B[n e w]}}
\end{gathered}
$$

Changing the Base of Per Unit Quantities

$$
\begin{gathered}
Z_{p u[\text { old }]}=\frac{\text { actual impedance, } Z(\Omega)}{\frac{\left(\text { base } k V_{[o l d]}\right)^{2} \times 1000}{\text { base } k V A_{[o l d]}}} \\
Z(\Omega)=\frac{Z_{\text {pu[old }]}\left(\text { base } k V_{[\text {old }]}\right)^{2} \times 1000}{\text { base } k V A_{[\text {old }]}} \\
Z_{B[\text { new }]}=\frac{\left(\text { base } k V_{[n e w]}\right)^{2} \times 1000}{\text { base } k V A_{[\text {new }]}} \\
Z_{p u[\text { new }]}=\frac{Z(\Omega)}{Z_{B[n e w]}}
\end{gathered}
$$

kVA Base for Motors

$\mathbf{k V A} / \mathrm{hp}$	hp rating
1.00	Induction $<100 \mathrm{hp}$
1.00	Synchronous 0.8 pf
0.95	Induction $100<999 \mathrm{hp}$
0.90	Synchronous 1.0 pf
0.80	

Short C ircuit Calculations IIEE Presentation

SYMMETRICAL COMPONENTS

Short C ircuit Calculations

 IIEE Presentation

Positive Sequence

$$
V_{a 0}=V_{b 0}=V_{c 0}
$$

Zero Sequence

Short Circuit Calculations IIEE Presentation

Negative Sequencé ${ }^{V_{c 2}}$

Symmetrical Components of Unbalanced Three-phase Phasor

$$
\begin{aligned}
& V_{a}=V_{a 0}+V_{a 1}+V_{a 2} \\
& V_{b}=V_{a 0}+a^{2} V_{a 1}+a V_{a 2} \\
& V_{c}=V_{a 0}+a V_{a 1}+a^{2} V_{a 2}
\end{aligned}
$$

$$
\begin{aligned}
& V_{a 0}=\frac{1}{3}\left(V_{a}+V_{b}+V_{c}\right) \\
& V_{a 1}=\frac{1}{3}\left(V_{a}+a V_{b}+a^{2} V_{c}\right) \\
& V_{a 2}=\frac{1}{3}\left(V_{a}+a^{2} V_{b}+a V_{c}\right)
\end{aligned}
$$

Symmetrical Components of Unbalánced Three-phase Phasor

In matrix form:

$$
\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
V_{a 0} \\
V_{a 1} \\
V_{a 2}
\end{array}\right]\left[\begin{array}{l}
V_{a 0} \\
V_{a 1} \\
V_{a 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]
$$

Power System Short Circuit Calculations

Sequence Networks

Fault Point

The fault point of a system is that point to which the unbalanced connection is attached to an otherwise balanced system.

Definition of Sequence Networks

Positive-sequence Network

$$
\begin{array}{cl}
\mathrm{E}_{\mathrm{a} 1}= & \begin{array}{l}
\text { Thevenin's equivalent } \\
\text { voltage as seen at the fault } \\
\text { point }
\end{array} \\
\mathrm{Z}_{1}=\begin{array}{l}
\text { Thevenin's equivalent } \\
\text { impedance as seen from } \\
\text { the fault point }
\end{array} \\
& V_{a 1}=E_{a 1}-I_{a 1} Z_{1}
\end{array}
$$

Short Circuit Calculations

Definition of Sequence Networks

Negative-sequence Network

$$
\begin{aligned}
\mathrm{Z}_{2}=\quad & \text { Thevenin's equivalent } \\
& \text { negative-sequence } \\
& \text { impedance as seen at } \\
& \text { the fault point } \\
& V_{a 2}=-I_{a 2} Z_{2}
\end{aligned}
$$

Definition of Sequence Networks

Zero-sequence Network

$$
Z_{0}=\text { Thevenin's equivalent }
$$

zero-sequence impedance as seen at the fault point

$$
V_{a 0}=-I_{a 0} Z_{0}
$$

Short C ircuit Calculations

Power System Short Circuit Calculations

Sequence Network Models of Power System Components

Synchronous Machines (Positive Sequence Network)

Synchronous Machines (Negative Sequence Network)

Where:

$$
x_{q}^{\prime \prime}=\text { quadrature-axis sub-transient reactance }
$$

Synchronous Machines (Zéro Sequence Network)

Solidly-Grounded Neutral

Synchronous Machines (Zé́ro Sequence Network)

Impedance-Grounded Neutral

Synchronous Machines (Zéro Sequence Network)

Ungrounded-Wye or Delta Connected Generators

$\mathrm{j} \mathrm{x}_{0}$
n

ground

Two-Winding Transformers (Pos Śtive Sequence Network)

Standard
Symbol

Three-Winding Transformers (Positive Sequence Network)

Standard Symbol

$$
\begin{aligned}
& Z_{p s}=Z_{p}+Z_{s} \\
& Z_{p t}=Z_{p}+Z_{t} \\
& Z_{s t}=Z_{s}+Z_{t}
\end{aligned}
$$

Short Circuit Calculations
Equivalent Positive-Sequence Network

$$
\begin{aligned}
& Z_{p}=\frac{1}{2}\left(Z_{p s}+Z_{p t}-Z_{s t}\right) \\
& Z_{s}=\frac{1}{2}\left(Z_{p s}+Z_{s t}-Z_{p t}\right)
\end{aligned}
$$

$$
Z_{t}=\frac{1}{2}\left(Z_{p t}+Z_{s t}-Z_{p s}\right)
$$

Transformers

(Negative Sequence Network)

The negative-sequence network of twowinding and three-winding transformers are modeled in the same way as the positive-sequence network since the positive-sequence and negative-sequence impedances of transformers are equal.

Simplified Derivation of Transformer ZeroSequence Circuit Modeling

(Thanks to Engr. Antonio C. Coronel, Retired VP, Meralco, and form er member, Board of Electrical Engineering)

Grounded wye	$\mathrm{S} 1=1$ and $\mathrm{S} 3=0$ or $\mathrm{S} 2=1$ or $\mathrm{S} 4=0$
Delta	$\mathrm{S} 1=0$ and $\mathrm{S} 3=1$ or $\mathrm{S} 2=0$ and $\mathrm{S} 4=1$
Ungrounded wye	$\mathrm{S} 1=0$ and $\mathrm{S} 3=0$
or	
Short Cirquit Calculations $=0$ and $\mathrm{S} 4=0$	

Simplified Derivation of Transformer Zepo-Sequence Circuit Modeling

Grounded wye - Grounded wye

Simplified Derivation of Transformer Zero-Sequence Circuit Modeling

Grounded wye - Ungrounded wye

Simplified Derivation of Transformer Zerosequence Circuit Modeling

Grounded wye - Delta

Simplified Derivation of Transformer Zerosequence Circuit Modeling

Delta - Delta

Transformers
 (Zeros Sequence Circuit Model)

Transformer
Connection

Transformers

(Zeros Sequence Circuit Model)

Transformer
Connection

Short Circuit Calculations IIEE Presentation

Zero-Sequence Circuit Equivalent

Transformers

Transformer
Connection

Short Circuit Calculations IIEE Presentation

Zero-Sequence
Circuit Equivalent

Transformers

(ZerosSequence Circuit Model)

Transformer
Connection

Zero-Sequence
Circuit Equivalent

Transmission Lines (Positive Sequence Network)

Z_{1}

Short C ircuit Calculations IIEE Presentation

Transmission Lines (Negative Sequence Network)

The same model as the positive-sequence network is used for transmission lines inasmuch as the positive-sequence and negative-sequence impedances of transmission lines are the same

Transmission Lines ero Sequence Network)

The zero-sequence network model for a transmission line is the same as that of the positive- and negative-sequence networks. The sequence impedance of the model is of course the zero-sequence impedance of the line. This is normally higher than the positive- and negative-sequence impedances because of the influence of the earth's resistivity and the ground wire/s.

Power System Short Circuit Calculations

Classification of Power System Short Circuits

Shunt Faults

$>$ Single line-to-ground faults $>$ Double line-to-ground faults $>$ Line-to-line faults
> Three-phase faults

Series Faults

$>$ One-line open faults > Two-line open faults

Combination of Shunt and Series Faults

$>$ Single line-to-ground and one-line open
$>$ Double line-to-ground and one-line open faults
$>$ Line-to-line and one-line open faults
$>$ Three-phase and one-line open faults

Combination of Shunt and Series Faults

> Single line-to-ground and two-line open faults $>$ Double line-to-ground and two-line open faults
$>$ Line-to-line and two-line open faults $>$ Three-phase and two-line open faults

Balanced Faults

Symmetrical or Three-Phase Faults

Derivation of Sequence Network Interconnections

Boundary conditions:

$$
\begin{array}{ll}
I_{a}+I_{b}+I_{c}=0 & \text { Eq'n (1) } \\
V_{F}=V_{a}-I_{a} Z_{f}=V_{b}-I_{b} Z_{f}=V_{c}-I_{c} Z_{f} & \text { Eq'n (2) }
\end{array}
$$

Short C ircuit Calculations

$$
I_{f}=I_{a 1}=\frac{E_{a 1}}{Z_{1}}
$$

Unbalanced Faults

Single Line-to-Ground Faults

Short Circuit Calculations

IIEE Presentation

Derivation of Sequence Network Interconnections

$$
\begin{aligned}
& I_{b}=I_{c}=0 \\
& V_{a}=I_{a} Z_{f}=0
\end{aligned}
$$

$$
\begin{aligned}
& I_{a 0}=I_{a 1}=I_{a 2}=\frac{E_{a 1}}{Z_{0}+Z_{1}+Z_{2}+3 Z_{f}} \\
& \text { If } Z_{f}=0 \\
& \qquad I_{a 0}=I_{a 1}=I_{a 2}=\frac{E_{a 1}}{Z_{0}+Z_{1}+Z_{2}} \\
& Z_{1}=Z_{2} \\
& \qquad I_{a 0}=I_{a 1}=I_{a 2}=\frac{E_{a 1}}{Z_{0}+2 Z_{1}} \\
& \quad I_{f}=I_{a}=I_{a 0}+I_{a 1}+I_{a 2}=3 I_{a 1}=3 I_{a 0} \\
& \text { If } Z_{f}=0 \text { and } Z_{1}=Z_{2}
\end{aligned}
$$

$$
I_{f}=I_{a}=\frac{3 E_{a i}}{Z_{0}+2 Z_{1}}
$$

Unbalanced Faults

Line-to-Line Faults

Derivation of Sequence Network Interconnections

Boundary conditions:

$$
\begin{aligned}
& I_{a}=0 \\
& I_{b}=-I_{c} \\
& V_{b}-I_{b} Z_{f}=V_{c} ; \text { or } V_{b}-V_{c}=I_{b} Z_{f}
\end{aligned}
$$

$I_{a 1}=\frac{E_{a 1}}{Z_{1}+Z_{2}+Z_{f}} \quad$ The fault current

$$
I_{f}=I_{b}=-I_{c}=I_{a 0}+a^{2} I_{a 1}+a I_{a 2}
$$

$$
\begin{aligned}
& I_{a o}=0 ; \quad I_{a 1}=-I_{a 2} \\
& I_{f}=\left(a^{2}-a\right) I_{a 1}=j \sqrt{3} I_{a 1}
\end{aligned}
$$

Short Circuit Calculations
IIEE Presentation
thas, with $Z_{1}=Z_{2}$

$$
I_{f}=-j \sqrt{3}\left[\frac{E_{a 1}}{2 Z_{1}+Z_{f}}\right]
$$

$$
\text { if } Z_{f}=0
$$

$$
\begin{aligned}
& \left|I_{f}\right|=\left|-j \frac{\sqrt{3} E_{a 1}}{2 Z_{1}}\right|=\left(\frac{\sqrt{3}}{2}\right)\left|\frac{E_{a 1}}{Z_{1}}\right| \\
& I_{f[3 \phi]}=\frac{E_{a 1}}{Z_{1}} \\
& I_{f[L-L]}=\frac{\sqrt{3}}{2} I_{f[3 \phi]}
\end{aligned}
$$

Unbalanced Faults

Double-to-line Ground Fault

Short C ircuit Calculations

 IIEE PresentationDerivation of Sequence Network Interconnections

Boundary conditions:

$$
\begin{aligned}
& I_{a}=0 \\
& V_{b}=I_{b} Z_{f}+\left(I_{b}+I_{c}\right) Z_{g} \\
& V_{c}=I_{c} Z_{f}+\left(I_{b}+I_{c}\right) Z_{g}
\end{aligned}
$$

Eq'n BC-1
Eq'n BC-2
Eq'n BC-3

Short Circuit Calculations

 IIEE Presentation

Short Circuit Calculations
IIEE Presentation

Negative-sequence Component:

$$
I_{a 2}=-I_{a 1}\left(\frac{Z_{0}+Z_{f}+3 Z_{g}}{Z_{2}+Z_{0}+2 Z_{f}+3 Z_{g}}\right)
$$

Zero-sequence Component:

$$
I_{a 0}=-I_{a 1}\left(\frac{Z_{2}+Z_{f}}{Z_{2}+Z_{0}+2 Z_{f}+3 Z_{g}}\right)
$$

The fault current

$$
\begin{aligned}
& I_{f}=I_{b}+I_{c}=\left(I_{a 0}+a^{2} I_{a 1}+a I_{a 2}\right)+\left(I_{a 0}+a I_{a 1}+a^{2} I_{a 2}\right) \\
& I_{f}=2 I_{a 0}+\left(a^{2}+a\right) I_{a 1}+\left(a+a^{2}\right) I_{a 2} \\
& I_{f}=2 I_{a 0}+(-1) I_{a 1}+(-1) I_{a 2}=2 I_{a 0}-\left(I_{a 1}+I_{a 2}\right)
\end{aligned}
$$

$$
\text { but } I_{a 0}+I_{a 1}+I_{a 2}=0 ; \text { or } I_{a 0}=-\left(I_{a 1}+I_{a 2}\right)
$$

$$
\text { thus, } I_{f}=3 I_{a 0}
$$

Short Circuit Calculations

$$
\begin{aligned}
& \text { If } Z_{f}=Z_{\mathrm{g}}=0 \text { and } Z_{1}=Z_{2} \\
& I_{a 1}=\frac{E_{a 1}}{Z_{1}+\frac{Z_{1} Z_{0}}{Z_{1}+Z_{0}}}=\frac{\left(Z_{1}+Z_{0}\right) E_{a 1}}{Z_{1}^{2}+2 Z_{1} Z_{0}} \\
& I_{a 2}=-I_{a 1}\left(\frac{Z_{0}}{Z_{1}+Z_{0}}\right)=-\left(\frac{E_{a 1}}{Z_{1}+\frac{Z_{1} Z_{0}}{Z_{1}+Z_{0}}}\right)\left(\frac{Z_{0}}{Z_{1}+Z_{0}}\right)=
\end{aligned}
$$

$$
-\frac{Z_{0} E_{a 1}}{Z_{1}^{2}+2 Z_{1} Z_{0}}
$$

Short Circuit Calculations

 IIEE Presentation$$
\text { If } Z_{f}=Z_{g}=0 \text { and } Z_{1}=Z_{2}
$$

$$
P_{a 1}=\frac{E_{a 1}}{Z_{1}+\frac{Z_{1} Z_{0}}{Z_{1}+Z_{0}}}=\frac{\left(Z_{1}+Z_{0}\right) E_{a 1}}{Z_{1}^{2}+2 Z_{1} Z_{0}}
$$

$$
I_{a 2}=-I_{a 1}\left(\frac{Z_{0}}{Z_{1}+Z_{0}}\right)=-\left(\frac{E_{a 1}}{Z_{1}+\frac{Z_{1} Z_{0}}{Z_{1}+Z_{0}}}\right)\left(\frac{Z_{0}}{Z_{1}+Z_{0}}\right)=
$$

$$
-\frac{Z_{0} E_{a 1}}{Z_{1}^{2}+2 Z_{1} Z_{0}}
$$

$$
I_{a 0}=-I_{a 1}\left(\frac{Z_{1}}{Z_{1}+Z_{0}}\right)=\left(\frac{E_{a 1}}{Z_{1}+\frac{Z_{1} Z_{0}}{Z_{1}+Z_{0}}}\right)\left(\frac{Z_{1}}{Z_{1}+Z_{0}}\right)
$$

$$
=\frac{Z_{1} E_{a 1}}{Z_{1}^{2}+2 Z_{1} Z_{0}}=\frac{E_{a 1}}{Z_{1}+2 Z_{0}}
$$

$$
I_{f}=3 I_{a 0}=\frac{3 E_{a 1}}{Z_{1}+2 Z_{0}}
$$

Voltage Rise Phenomenon

Single-to-line Ground Fault

Unfaulted Phase B Voltage During Single Line-to-Ground Faults

$$
\begin{aligned}
& V_{b}=V_{a 0}+a^{2} V_{a 1}+a V_{a 2} \\
& V_{b}=-\left(\frac{E_{a 1}}{2 Z_{1}+Z_{0}}\right) Z_{0}+a^{2}\left[E_{a 1}-\left(\frac{E_{a 1}}{2 Z_{1}+Z_{0}}\right) Z_{1}\right]-a\left(\frac{E_{a 1}}{2 Z_{1}+Z_{0}}\right) Z_{1} \\
& V_{b}=E_{a 1}\left[a^{2}-\left(\frac{Z_{0}-Z_{1}}{2 Z_{1}+Z_{0}}\right)\right]=E_{a 1}\left(a^{2}-\left(\frac{Z_{1}}{Z_{1}}\right)\left(\frac{\frac{Z_{0}}{Z_{1}}-1}{2+\frac{Z_{0}}{Z_{1}}}\right)\right] \\
& V_{b}=E_{a 1}\left[a^{2}-\left(\frac{\frac{Z_{0}}{Z_{1}}-1}{2+\frac{Z_{0}}{Z_{1}}}\right)\right]
\end{aligned}
$$

neglecting resistances, R_{1} and R_{0};

$$
V_{b}=E_{a 1}\left[a^{2}-\left(\frac{\frac{X_{0}}{X_{1}}-1}{2+\frac{X_{0}}{X_{1}}}\right)\right]
$$

Unfaulted Phase B Voltage During Single Line-to-Ground Faults

Neglecting resistances R0 \& R1

Fault MVA

$$
M V A_{F}=I_{F} \times M V A_{b a s e}
$$

$$
\text { where, for } E_{a 1}=1.0 \text { p.u.; }
$$

for three - phase fault in p.u. :

$$
I_{F(3 \phi)}=\frac{1}{Z_{1}}
$$

for singe line - to - ground fault in p.u.:

$$
I_{F(S L G)}=\frac{3}{Z_{0}+2 Z_{1}}
$$

Fault MVA

Three-phase fault MVA:

$$
\begin{aligned}
& M V A_{F(3 \phi)}=I_{F(3 \phi)}(\text { p.u. }) \times M V A_{\text {base }} \\
& Z_{1}=\frac{1}{I_{F(3 \phi)}} \text { p.u. }
\end{aligned}
$$

Single line-to-ground fault MVA:

$$
\begin{aligned}
& M V A_{F(S L G)}=I_{F(S L G)}(\text { p.u. }) \times M V A_{\text {base }} \\
& 2 Z_{1}+Z_{0}=\frac{3}{I_{F(S L G)}} \text { p.u. }
\end{aligned}
$$

$$
Z_{0}=\frac{3}{I_{F(S L G)}}-2 Z_{1}
$$

Assumptions Made to Simplify , Fault Calculations

1. Pre-fault load currents are neglected.
2. Pre-fault voltages are assumed equal to 1.0 per unit.
3. Resistances are neglected (only for 115 kV \& up).
4. Mutual impedances, when not appreciable are neglected.
5. Off-nominal transformer taps are equal to 1.0 per unit.
6. Positive- and negative-sequence impedances are equal.

Outline of Procedures for Shorf Circuit Calculations

1 Setup the network impedances expressed in per unit on a common MVA base in the form of a single-line diagram
2 Determine the single equivalent (Thevenin's) impedance of each sequence network.
3 Determine the distribution factor giving the current in the individual branches for unit total sequence current.

Outline of Procedures for Shoft Circuit Calculations

4 Interconnect the three sequence networks for the type of fault under considerations and calculate the sequence currents at the fault point.
5 Determine the sequence current distribution by the application of the distribution factors to the sequence currents at the fault point
6 Synthesize the phase currents from the sequence currents.

Outline of Procedures for Shoft Circuit Calculations

7 Determine the sequence voltages throughout the networks from the sequence current distribution and branch impedances
8 Synthesize the phase voltages from the sequence voltage components
9 Convert the pre unit currents and voltages to actual physical units

CIRCUIT BREAKING SIZING (Asymmetrical Rating Factors)

- Momentary Rating
- Multiplying Factor $=1.6$
- Interrupting Rating
-Multiplying Factor
>8 cycles $=1.0$
>5 cycles $=1.1$
>3 cycles $=1.2$
$>11 / 2$ cycles $=1.5$

EXAMPLE PROBLEM

In the power system shown, determine the momentary and interrupting ratings for primary and secondary circuit breakers of transformer T2.

Solution:

Equivalent 69kV system@100MVA :

$$
\begin{aligned}
& I_{F(\Omega \phi)}=\left[\frac{800}{100}\right]=8 p u \\
& I_{F(S L G)}=\left[\frac{1000}{100}\right]=10 p u \\
& x_{1}=\frac{1}{8}=0.125 \mathrm{pu} \\
& x_{0}=\frac{3}{10}-2 \times 0.125=0.05 p u
\end{aligned}
$$

$$
\mathrm{T} 2, \mathrm{~T} 3, \mathrm{~T} 3:
$$

$$
x=0.06\left[\frac{100}{75}\right]=0.80 \mathrm{pu}
$$

$$
\mathrm{M} 1, \mathrm{M} 2: \mathrm{kVA} \mathrm{~B}^{2}=0.9 \times 5000=4500
$$

$$
\text { or } \mathrm{MVA} \mathrm{~A}_{\mathrm{B}}=4.5
$$

T1:

$$
x=0.08\left[\frac{100}{30}\right]=0.2667 p u
$$

G1:

$$
\begin{aligned}
& x^{\prime \prime}=0.10\left[\frac{100}{25}\right]=0.40 p u \\
& x_{0}=0.06\left[\frac{100}{25}\right]=0.24 p u
\end{aligned}
$$

$$
x=0.15\left[\frac{100}{4.5}\right]=3.3333 p u
$$

Solution:

Positive sequence network:

Solution:

Zero sequence network:

Improper Sequence Network Models

Improper Sequence Network Models

Case 1 Power System Diagram

Improper Sequence Network Models

Case 1 - Impedance Diagram

Short Circuit Calculations

 IIEE Presentation
Incorrect Sequence Network Models

ONE LINE DIAGRAM

$\mathrm{G} 1=\mathrm{G} 2=\mathrm{G} 5$	$\mathrm{G3}=\mathrm{G4}$
$\mathrm{P}=1000 \mathrm{KW} / 1250 \mathrm{KVA}$	$\mathrm{P}=1250 \mathrm{KW} / 1562 \mathrm{KVA}$
$\mathrm{V}=480$ volts	$\mathrm{V}=480$ volts
$\mathrm{Pf}=0.8$	$\mathrm{Pf}=0.8$

w/ group of small motors
motors (hundreds HP)

IIEE Presentation

